Tensorium
|
Provides methods to compute the conformal Ricci tensor \( \tilde{R}_{ij} \) in the BSSN formulation. More...
#include <BSSNRicciTildeTensor.hpp>
Static Public Member Functions | |
static tensorium::Tensor< T, 2 > | compute_laplacian_term (const tensorium::Vector< T > &X, T dx, T dy, T dz, const Metric< T > &metric, const tensorium::Tensor< T, 2 > &gamma_tilde_inv) |
Compute \( R^{(1)}_{ij} = -\frac{1}{2} \tilde{\gamma}^{kl} \partial_k \partial_l \tilde{\gamma}_{ij} \) using scalar autodiff. | |
static tensorium::Tensor< T, 2 > | compute_dGamma_term (const tensorium::Vector< T > &X, T dx, T dy, T dz, const tensorium::Vector< T > &tilde_Gamma, const tensorium::Tensor< T, 2 > &tilde_gamma_contract) |
Compute \( R^{(2)}_{ij} = \frac{1}{2} \left( \nabla_i \tilde{\Gamma}_j + \nabla_j \tilde{\Gamma}_i \right) \). | |
static tensorium::Tensor< T, 2 > | compute_GammaGamma_term (const tensorium::Vector< T > &tilde_Gamma, const tensorium::Tensor< T, 3 > &christoffel_tilde, const tensorium::Tensor< T, 2 > &gamma_tilde) |
Compute the nonlinear contracted term: | |
static tensorium::Tensor< T, 2 > | compute_GammaProduct_term (const tensorium::Tensor< T, 2 > &gamma_tilde_inv, const tensorium::Tensor< T, 3 > &christoffel_tilde) |
Compute the quadratic Christoffel term: | |
static tensorium::Tensor< T, 2 > | compute_Ricci_Tilde_tensor (const ChiContext< T > &chi_context, const tensorium::Tensor< T, 2 > &gamma_tilde_inv, const tensorium::Vector< T > &tilde_Gamma, const tensorium::Tensor< T, 3 > &christoffel_tilde, const tensorium::Tensor< T, 2 > &gamma_tilde) |
Combine all four contributions to compute the conformal Ricci tensor: | |
Provides methods to compute the conformal Ricci tensor \( \tilde{R}_{ij} \) in the BSSN formulation.
The conformal Ricci tensor is given by:
\[ \tilde{R}_{ij} = R^{(1)}_{ij} + R^{(2)}_{ij} + R^{(3)}_{ij} + R^{(4)}_{ij} \]
where:
Each term is computed separately and combined to give \( \tilde{R}_{ij} \).
|
inlinestatic |
Compute \( R^{(2)}_{ij} = \frac{1}{2} \left( \nabla_i \tilde{\Gamma}_j + \nabla_j \tilde{\Gamma}_i \right) \).
X | Spatial point |
dx,dy,dz | Grid spacings |
tilde_Gamma | Contracted conformal Christoffel vector \( \tilde{\Gamma}^i \) |
tilde_gamma | Conformal metric \( \tilde{\gamma}_{ij} \) |
References tensorium_RG::partial_scalar(), and X().
Referenced by tensorium_RG::RicciTildeTensor< T >::compute_Ricci_Tilde_tensor().
|
inlinestatic |
Compute the nonlinear contracted term:
\[ R^{(3)}_{ij} = \frac{1}{2} \tilde{\Gamma}^k \left( \tilde{\gamma}_{ki} \tilde{\Gamma}^l_{jl} + \tilde{\gamma}_{kj} \tilde{\Gamma}^l_{il} \right) \]
tilde_Gamma | Contracted Christoffel symbols \( \tilde{\Gamma}^k \) |
christoffel_tilde | Christoffel symbols \( \tilde{\Gamma}^i_{jk} \) |
gamma_tilde | Conformal metric \( \tilde{\gamma}_{ij} \) |
Referenced by tensorium_RG::RicciTildeTensor< T >::compute_Ricci_Tilde_tensor().
|
inlinestatic |
Compute the quadratic Christoffel term:
\[ R^{(4)}_{ij} = \tilde{\gamma}^{\ell m} \left( 2 \tilde{\Gamma}^k_{\ell(i} \tilde{\Gamma}_{j)km} + \tilde{\Gamma}^k_{im} \tilde{\Gamma}_{k\ell j} \right) \]
gamma_tilde_inv | Inverse conformal metric \( \tilde{\gamma}^{\ell m} \) |
christoffel_tilde | Christoffel symbols \( \tilde{\Gamma}^i_{jk} \) |
Referenced by tensorium_RG::RicciTildeTensor< T >::compute_Ricci_Tilde_tensor().
|
inlinestatic |
Compute \( R^{(1)}_{ij} = -\frac{1}{2} \tilde{\gamma}^{kl} \partial_k \partial_l \tilde{\gamma}_{ij} \) using scalar autodiff.
X | Position vector |
dx,dy,dz | Grid spacings |
metric | Metric object to evaluate \( \tilde{\gamma}_{ij} \) |
gamma_tilde_inv | Inverse of the conformal metric \( \tilde{\gamma}^{kl} \) |
References tensorium_RG::Metric< T >::BSSN(), chi, and X().
Referenced by tensorium_RG::RicciTildeTensor< T >::compute_Ricci_Tilde_tensor().
|
inlinestatic |
Combine all four contributions to compute the conformal Ricci tensor:
\[ \tilde{R}_{ij} = R^{(1)}_{ij} + R^{(2)}_{ij} + R^{(3)}_{ij} + R^{(4)}_{ij} \]
chi_context | ChiContext (holds metric, position, grid spacing, etc.) |
gamma_tilde_inv | Inverse conformal metric |
tilde_Gamma | Contracted conformal Christoffel vector |
christoffel_tilde | Conformal Christoffel symbols |
gamma_tilde | Conformal metric |
References tensorium_RG::RicciTildeTensor< T >::compute_dGamma_term(), tensorium_RG::RicciTildeTensor< T >::compute_GammaGamma_term(), tensorium_RG::RicciTildeTensor< T >::compute_GammaProduct_term(), tensorium_RG::RicciTildeTensor< T >::compute_laplacian_term(), and X().
Referenced by tensorium_RG::RicciPhysicalTensor< T >::compute_Ricci_total(), and tensorium_RG::BSSN< T >::init_BSSN().