Tensorium
|
Computes the physical 3-Ricci tensor \( R_{ij} \) as the sum of conformal and conformal-factor contributions. More...
#include <BSSNRicciComplete.hpp>
Static Public Member Functions | |
static tensorium::Tensor< T, 2 > | compute_Ricci_total (const ChiContext< T > &chi_context, const tensorium::Tensor< T, 2 > &gamma_tilde, const tensorium::Tensor< T, 2 > &gamma_tilde_inv, const tensorium::Vector< T > &tilde_Gamma, const tensorium::Tensor< T, 3 > &christoffel_tilde) |
Compute the full Ricci tensor \( R_{ij} \) as the sum of \( \tilde{R}_{ij} \) and \( R^\chi_{ij} \). | |
Computes the physical 3-Ricci tensor \( R_{ij} \) as the sum of conformal and conformal-factor contributions.
In the BSSN formulation of general relativity, the physical Ricci tensor \( R_{ij} \) is decomposed as:
\[ R_{ij} = \tilde{R}_{ij} + R^{\chi}_{ij} \]
where:
Expanding all terms in partial derivatives:
\[ R_{ij} = -\frac{1}{2} \tilde{\gamma}^{kl} \partial_k \partial_l \tilde{\gamma}_{ij} + \frac{1}{2} \left( \partial_i \tilde{\Gamma}_j + \partial_j \tilde{\Gamma}_i \right) + \frac{1}{2} \tilde{\Gamma}^k \left( \tilde{\gamma}_{ki} \tilde{\Gamma}^l_{jl} + \tilde{\gamma}_{kj} \tilde{\Gamma}^l_{il} \right) + \tilde{\gamma}^{\ell m} \left( 2 \tilde{\Gamma}^k_{\ell(i} \tilde{\Gamma}_{j)km} + \tilde{\Gamma}^k_{im} \tilde{\Gamma}_{k\ell j} \right) + \frac{1}{\chi} \left( \partial_i \partial_j \chi - \tilde{\Gamma}^k_{ij} \partial_k \chi \right) + \frac{1}{2\chi} \tilde{\gamma}_{ij} \tilde{\gamma}^{kl} \left( \partial_k \partial_l \chi - \tilde{\Gamma}^m_{kl} \partial_m \chi \right) - \frac{3}{2\chi^2} \partial_i \chi \partial_j \chi + \frac{1}{2\chi^2} \tilde{\gamma}_{ij} \tilde{\gamma}^{kl} \partial_k \chi \partial_l \chi \]
This class computes each term independently and sums them to obtain the total physical Ricci tensor.
T | Scalar type (e.g., float or double) |
|
inlinestatic |
Compute the full Ricci tensor \( R_{ij} \) as the sum of \( \tilde{R}_{ij} \) and \( R^\chi_{ij} \).
This method calls:
and returns:
\[ R_{ij} = \tilde{R}_{ij} + R^{\chi}_{ij} \]
Also prints the Frobenius norm of \( R_{ij} \) for diagnostics.
chi_context | ChiContext object containing metric, grid spacing, and position |
gamma_tilde | Conformal metric \( \tilde{\gamma}_{ij} \) |
gamma_tilde_inv | Inverse conformal metric \( \tilde{\gamma}^{ij} \) |
tilde_Gamma | Contracted conformal Christoffel symbols \( \tilde{\Gamma}^i \) |
christoffel_tilde | Full Christoffel symbols \( \tilde{\Gamma}^i_{jk} \) |
References tensorium_RG::RicciConformalTensor< T >::compute_Ricci_chi_total(), and tensorium_RG::RicciTildeTensor< T >::compute_Ricci_Tilde_tensor().
Referenced by tensorium_RG::BSSN< T >::init_BSSN().