Tensorium
Loading...
Searching...
No Matches
tensorium_RG::BSSNContractedGamma< T > Class Template Reference

#include <BSSNContractedChristoffel.hpp>

Collaboration diagram for tensorium_RG::BSSNContractedGamma< T >:

Public Member Functions

void compute_contracted_christoffel (const tensorium::Vector< T > &X, T dx, T dy, T dz, const tensorium_RG::Metric< T > &metric, tensorium::Tensor< T, 5 > &dGamma_contract)
 

Static Public Member Functions

static tensorium::Vector< T > compute (const tensorium::Vector< T > &X, const tensorium_RG::Metric< T > &metric, T dx, T dy, T dz, T chi)
 Compute the contracted Christoffel symbol \( \Gamma^i_{ij} = -\frac{3}{2} \partial_j \ln \chi \).
 

Member Function Documentation

◆ compute()

template<typename T >
static tensorium::Vector< T > tensorium_RG::BSSNContractedGamma< T >::compute ( const tensorium::Vector< T > & X,
const tensorium_RG::Metric< T > & metric,
T dx,
T dy,
T dz,
T chi )
inlinestatic

Compute the contracted Christoffel symbol \( \Gamma^i_{ij} = -\frac{3}{2} \partial_j \ln \chi \).

This uses the relation:

\[ \Gamma^i_{ij} = -\frac{3}{2} \frac{\partial_j \chi}{\chi} \]

Parameters
XSpatial coordinates
metricMetric object implementing BSSN(X, alpha, beta, gamma)
dx,dy,dzGrid spacing
chiConformal factor \( \chi \)
Returns
Vector containing \( \Gamma^i_{ij} \) for each j

References tensorium_RG::Metric< T >::BSSN(), chi, and X().

Referenced by tensorium_RG::BSSNContractedGamma< T >::compute_contracted_christoffel(), and tensorium_RG::BSSN< T >::init_BSSN().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ compute_contracted_christoffel()

template<typename T >
void tensorium_RG::BSSNContractedGamma< T >::compute_contracted_christoffel ( const tensorium::Vector< T > & X,
T dx,
T dy,
T dz,
const tensorium_RG::Metric< T > & metric,
tensorium::Tensor< T, 5 > & dGamma_contract )
inline

References alpha, beta, tensorium_RG::Metric< T >::BSSN(), chi, tensorium_RG::BSSNContractedGamma< T >::compute(), gamma, tensorium::Tensor< K, Rank >::shape(), and X().

Here is the call graph for this function:

The documentation for this class was generated from the following file: