Tensorium
|
#include <BSSNContractedChristoffel.hpp>
Public Member Functions | |
void | compute_contracted_christoffel (const tensorium::Vector< T > &X, T dx, T dy, T dz, const tensorium_RG::Metric< T > &metric, tensorium::Tensor< T, 5 > &dGamma_contract) |
Static Public Member Functions | |
static tensorium::Vector< T > | compute (const tensorium::Vector< T > &X, const tensorium_RG::Metric< T > &metric, T dx, T dy, T dz, T chi) |
Compute the contracted Christoffel symbol \( \Gamma^i_{ij} = -\frac{3}{2} \partial_j
\ln \chi \). | |
|
inlinestatic |
Compute the contracted Christoffel symbol \( \Gamma^i_{ij} = -\frac{3}{2} \partial_j \ln \chi \).
This uses the relation:
\[ \Gamma^i_{ij} = -\frac{3}{2} \frac{\partial_j \chi}{\chi} \]
X | Spatial coordinates |
metric | Metric object implementing BSSN(X, alpha, beta, gamma) |
dx,dy,dz | Grid spacing |
chi | Conformal factor \( \chi \) |
References tensorium_RG::Metric< T >::BSSN(), chi, and X().
Referenced by tensorium_RG::BSSNContractedGamma< T >::compute_contracted_christoffel(), and tensorium_RG::BSSN< T >::init_BSSN().
|
inline |
References alpha, beta, tensorium_RG::Metric< T >::BSSN(), chi, tensorium_RG::BSSNContractedGamma< T >::compute(), gamma, tensorium::Tensor< K, Rank >::shape(), and X().