Tensorium
Loading...
Searching...
No Matches
Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 12]
 Ctensorium_RG::bssn::ADMVariables< T >ADM \((3+1)\) variables evaluated at a spatial point
 CAlignedAllocator< T, Alignment >Aligned memory allocator for high-performance computing
 Ctensorium_RG::AlignedDeleter< T >
 CASTConsumer
 CTensoriumASTConsumerAST consumer that matches specific patterns in the AST related to Tensorium usage
 Ctensorium_RG::BoundaryClamp
 Ctensorium_RG::BoundaryPeriodic
 Ctensorium_RG::BSSN< T >Driver class to initialize and store BSSN variables from an input spacetime metric
 Ctensorium_RG::BSSNAtildeTensor< K >Computes the trace-free conformal extrinsic curvature tensor \( \tilde{A}_{ij} \) in the BSSN formalism
 Ctensorium_RG::BSSNChristoffel< T >Compute the conformal Christoffel symbols \( \tilde{\Gamma}^k_{ij} \)
 CBSSNConstraints< T >
 Ctensorium_RG::BSSNContractedGamma< T >
 Ctensorium_RG::BSSNGridStorage structure for all evolved BSSN variables on a single grid point or patch
 Ctensorium_RG::bssn::BSSNRHSWorkspace< T >Stores RHS buffers for every evolved variable
 Ctensorium_RG::bssn::BSSNRKStepper< T, Boundary >Classical RK4 stepper that manages halo exchanges, geometry refresh, and diagnostics
 Ctensorium_RG::bssn::BSSNVariables< T >Conformal variables \(\{\chi,\tilde{\gamma}_{ij},\tilde{\gamma}^{ij}\}\) derived from ADM data
 Ctensorium::CacheInfo
 Ctensorium_RG::ChiContext< T >
 Ctensorium_RG::ChristoffelSym< T >Stores and computes Christoffel symbols \( \Gamma^\lambda_{\mu\nu} \)
 Ctensorium_RG::bssn::ConstraintMonitorStatsSnapshot of max/L2 Hamiltonian error plus algebraic drifts
 Ctensorium_RG::ConstraintSolver< T >
 Ctensorium::Derivate< K >A 2D aligned matrix for numerical derivatives
 Ctensorium::DerivateND< K, Rank >A multi-dimensional aligned tensor for numerical derivatives
 Ctensorium_RG::ExtrinsicCurvature< K >Computes the extrinsic curvature tensor \( K_{ij} \) from BSSN variables
 Ctensorium_RG::Field3D< T >
 Ctensorium_RG::bssn::GaugeParameters< T >Tunable coefficients for the Gamma-driver system
 Ctensorium::solver::Gauss< K >Direct Gaussian elimination solver with SIMD acceleration
 Ctensorium::solver::GaussSeidel< K >Placeholder for Gauss–Seidel iterative solver
 Ctensorium::GemmKernelBig< T >
 Ctensorium_RG::GridDims
 Ctensorium_RG::bssn::InvariantStatsAggregated statistics computed over the interior domain
 Ctensorium_RG::bssn::InvariantTolerancesThresholds against which assert_invariants compares the measured drifts
 Ctensorium::solver::Jacobi< K >Iterative Jacobi solver with SIMD and OpenMP support
 CMatchFinder::MatchCallback
 CTensoriumASTConsumer::AlignedCheckerCallback for handling matches from the AST
 CMathsUtils
 Ctensorium::Matrix< K, RowMajor >High-performance aligned matrix class with SIMD support
 Ctensorium::Matrix< K, true >
 Ctensorium::MatrixKernel< K >MatrixKernel provides specialized SIMD-accelerated matrix multiplication routines for statically-sized square matrices
 Ctensorium_RG::Metric< T >A callable 4D metric class for general relativity (Minkowski, Schwarzschild, Kerr, etc.)
 Ctensorium_RG::bssn::ProjectionConfigFine-grained control over which invariants get enforced during projection
 CAlignedAllocator< T, Alignment >::rebind< U >Rebinding structure for allocator traits
 Ctensorium_RG::RicciConformalTensor< T >Provides methods to compute the \( \chi \)-dependent part of the Ricci tensor in the BSSN formalism
 Ctensorium_RG::RicciPhysicalTensor< T >Computes the physical 3-Ricci tensor \( R_{ij} \) as the sum of conformal and conformal-factor contributions
 Ctensorium_RG::RicciTensor< T >Computes the Ricci tensor and Ricci scalar from a 4D Riemann tensor
 Ctensorium_RG::RicciTildeTensor< T >Provides methods to compute the conformal Ricci tensor \( \tilde{R}_{ij} \) in the BSSN formulation
 Ctensorium_RG::RiemannTensor< T >Computes the 4D Riemann curvature tensor \( R^\rho_{\ \sigma\mu\nu} \)
 Ctensorium_RG::bssn::SampleLocationIndex-space and physical coordinates where the worst invariant violation occurred
 Csimd::SimdTraits< T, ISA >
 Ctensorium::SpectalChebyshev< T >Placeholder Chebyshev spectral method class
 Ctensorium::SpectralFFT< T >Fast Fourier Transform (FFT) implementation using Cooley–Tukey algorithm
 Ctensorium_RG::Strides< T >
 Ctensorium::Tensor< K, Rank >Multi-dimensional tensor class with fixed rank and SIMD support
 CTensoriumTarget
 Ctensorium::TensorTraits< T >
 Ctensorium::TensorTraits< Tensor< T, Rank > >
 Ctensorium::TensorTraits< Vector< T > >
 Ctensorium_RG::TildeGamma< T >Computes the contracted conformal Christoffel vector \( \tilde{\Gamma}^i \)
 Ctensorium::Vector< K >Aligned, SIMD-optimized mathematical vector class for scientific computing